[1] (10 Pts.)
(a) (6 Pts.) Find the critical points (points satisfying the Lagrange condition) and local extremizers of

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+3 x_{2}^{2}+x_{3} \\
& \text { subject to } \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=4 .
\end{aligned}
$$

Explain how these values are found.
(b) (4 Pts.) Find the solutions to

$$
\begin{array}{ll}
\operatorname{maximize} & x^{\top}\left[\begin{array}{ll}
3 & 5 \\
0 & 3
\end{array}\right] x \\
\text { subject to } & \|x\|=1
\end{array}
$$

Explain how these values are found.

Optimization / Numerical Linear Algebra (ONLA)

[2] (10 Pts.) Let

$$
B:=\left[\begin{array}{cc}
I & A \\
A^{*} & I
\end{array}\right]
$$

where A is square with $\|A\|_{2} \leq 1$ and I denotes the identity matrix of the same size. Prove that the condition number of B (recall $\kappa(B)=\|B\|_{2}\left\|B^{-1}\right\|_{2}$ is the ratio of the largest to smallest singular value) satisfies

$$
\kappa(B)=\frac{1+\|A\|_{2}}{1-\|A\|_{2}} .
$$

Hint: Consider the SVD of $A=U \Sigma V^{*}$ and simplify the product of B times $\left[\begin{array}{c}U \\ \pm V\end{array}\right]$.

Optimization / Numerical Linear Algebra (ONLA)

[3] (10 Pts.) Let $A \in \mathbb{R}^{n \times n}$. Recall that the Jacobi iteration on $A x=b$ is given by

$$
x^{(k+1)}=M^{-1} N x^{(k)}+M^{-1} b, \quad M=D, \quad N=-(L+U),
$$

where L, D, U are lower triangular, diagonal, and upper triangular parts of A. Introducing a positive weight ω, the Jacobi Over-Relaxation (JOR) iteration uses

$$
M=\frac{1}{\omega} D, \quad N=-\left(\left(1-\frac{1}{\omega}\right) D+L+U\right) .
$$

Prove that if Jacobi iteration converges, JOR would also converge when $0<\omega \leq 1$.

Optimization / Numerical Linear Algebra (ONLA)

[4] (10 Pts.) Recall that the Lanczos iteration tridiagonalizes a hermitian A by building towards

$$
T_{n}=\left(\begin{array}{ccccc}
\alpha_{1} & \beta_{1} & & & \\
\beta_{1} & \alpha_{2} & \beta_{2} & & \\
& \beta_{2} & \alpha_{3} & \ddots & \\
& & \ddots & \ddots & \beta_{n-1} \\
& & & \beta_{n-1} & \alpha_{n}
\end{array}\right)
$$

The Lanczos algorithm is given by

$$
\begin{aligned}
& \beta_{0}=0, \quad q_{0}=0, \quad b=\text { arbitrary, } \quad q_{1}=b /\|b\| \\
& \text { for } n=1,2,3, \ldots \\
& \quad v=A q_{n} \\
& \quad a_{n}=q_{n}^{T} v \\
& \quad v=v-\beta_{n-1} q_{n-1}-\alpha_{n} q_{n} \\
& \quad \beta_{n}=\|v\| \\
& q_{n+1}=v / \beta_{n}
\end{aligned}
$$

(a) (6 Pts.) Show that if a symmetric real matrix A has a multiple eigenvalue, then the Lanczos iteration terminates prematurely.
(b) (4 Pts.) Show whether the converse is true (premature termination \Rightarrow multiple eigenvalue).

Optimization / Numerical Linear Algebra (ONLA)

[5] (10 Pts.) Let A be a positive definite symmetric $n \times n$ matrix and consider the system of equations $A x=b$. Let $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ be a set of A-orthogonal non-zero vectors (recall A orthogonality means z_{i} and $A z_{j}$ are orthogonal for all $i \neq j$). Given an initial starting point x_{0}, define the conjugate directions iteration by

$$
w_{k}=\frac{\left\langle z_{k}, b-A x_{k-1}\right\rangle}{\left\langle z_{k}, A z_{k}\right\rangle}, \quad x_{k}=x_{k-1}+w_{k} z_{k} .
$$

Prove (assuming exact arithmetic) that $A x_{n}=b$.

Optimization / Numerical Linear Algebra (ONLA)

[6] (10 Pts.) Let $A=Q R$ be a reduced QR factorization for a tall matrix A of size $N \times n(N \geq n)$. Prove that if R has m nonzero values on its diagonal then $\operatorname{rank}(A) \geq m$.

Optimization / Numerical Linear Algebra (ONLA)

[7] (10 Pts.) Recall that GMRES for $A x=b$ (with $A \in \mathbb{R}^{m \times m}$) combines the Arnoldi algorithm with a least squares solve:

$$
\begin{aligned}
& q_{1}=b /\|b\| \\
& \text { for } n=1,2,3, \ldots \\
& v=A q_{n} \\
& \text { for } j=1,2, \ldots, n \\
& h_{j n}=q_{j}^{*} v \\
& v=v-h_{j n} q_{j} \\
& h_{n+1, n}=\|v\| \\
& q_{n+1}=v / h_{n+1, n} \\
& x_{n}=\min _{x \in \mathcal{K}_{n}}\|A x-b\|_{2}
\end{aligned}
$$

where $\mathcal{K}_{n}=\left\langle b, A b, \ldots, A^{n-1} b\right\rangle$. Assume that A is nonsingular and $b \neq 0$. Assume exact arithmetic. Suppose that at iteration n (with $n<m$) we encounter $h_{n+1, n}=0$ ("Arnoldi breakdown").
(a) (4 Pts.) Show that $A \mathcal{K}_{n} \subseteq \mathcal{K}_{n}$. (Hint: Arnoldi iteration defines a recurrence $A q_{n}=$ $\left.h_{1 n} q_{1}+\cdots+h_{n n} q_{n}+h_{n+1, n} q_{n+1}.\right)$
(b) (4 Pts.) Show that this encounter guarantees that the solution x satisfies $x \in \mathcal{K}_{n}$ so that $A x=b$ is solved.
(c) (2 Pts.) Assuming you are given a diagonalizable matrix A and a number $n<m$. Describe (with explanation) a strategy of constructing a b vector so that the breakdown will occur no later than step n.

Optimization / Numerical Linear Algebra (ONLA)

[8] (10 Pts.)
(a) (4 Pts.) Consider the algorithm $x^{(k+1)}=x^{(k)}-\alpha_{k} M_{k} \nabla f\left(x^{(k)}\right)$, where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f \in C^{1}$, $M_{k}=\left[\begin{array}{ll}1 & 1 \\ 0 & a\end{array}\right]$ with $a \in \mathbb{R}$, and

$$
\alpha_{k}=\operatorname{argmin}_{\alpha \geq 0} f\left(x^{(k)}-\alpha M_{k} \nabla f\left(x^{(k)}\right)\right) .
$$

Suppose that at some iteration k we have $\nabla f\left(x^{(k)}\right)=[1,-1]^{\top}$. Find the largest range of values of a that guarantees $\alpha_{k}>0$.
(b) (6 Pts.) Consider a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $f(w) \geq c$ for all $w \in \mathbb{R}^{d}$. Assume there is some $L>0$ so that the descent lemma holds:

$$
f\left(w^{\prime}\right) \leq f(w)+\nabla f(w)^{\top}\left(w^{\prime}-w\right)+\frac{L}{2}\left\|w^{\prime}-w\right\|^{2} \quad \text { for all } w^{\prime}, w \in \mathbb{R}^{d}
$$

Show that there exists $\alpha \in \mathbb{R}$ such that if we run gradient descent with fixed step size α (i.e., we create a sequence $w^{(t+1)}=w^{(t)}-\alpha \nabla f\left(w^{(t)}\right)$ with some initial value $\left.w^{(0)}\right)$, then

$$
\min _{0 \leq t \leq T-1}\left\|\nabla f\left(w^{(t)}\right)\right\|^{2} \leq \frac{2 L}{T}\left|f\left(w^{(0)}\right)-c\right| .
$$

Qualifying Exam, Fall 2021
Optimization / Numerical Linear Algebra (ONLA)

Qualifying Exam, Fall 2021
Optimization / Numerical Linear Algebra (ONLA)

Qualifying Exam, Fall 2021
Optimization / Numerical Linear Algebra (ONLA)

Qualifying Exam, Fall 2021
Optimization / Numerical Linear Algebra (ONLA)

Qualifying Exam, Fall 2021
Optimization / Numerical Linear Algebra (ONLA)

